Как да намерите границата на функцията

Съдържание:

Как да намерите границата на функцията
Как да намерите границата на функцията

Видео: Как да намерите границата на функцията

Видео: Как да намерите границата на функцията
Видео: Потенциальное поле. Нахождение потенциала векторного поля 2023, Октомври
Anonim

Намирането на границите на функциите е основно понятие в смятането. Границите се използват за изследване на поведението на функция около определена точка. Изчислителните граници включват много методи и тази статия очертава някои от тях.

Стъпки

Стъпка 1. Използвайте метода на директно заместване

Ако например имаме limx → 4 (x+4) { displaystyle { displaystyle / lim _ {x / до 4} (x+4)}}

plug in 4{displaystyle 4}

where x{displaystyle x}

is. that gives us 8{displaystyle 8}

. the limit of f{displaystyle f}

where f(x)=x+4{displaystyle f(x)=x+4}

at x=4{displaystyle x=4}

is 8{displaystyle 8}

. this might not always work, though; when the problem involves rational functions with a variable in the denominator, like limx→2x2−4x−2{displaystyle \lim _{x\to 2}{frac {mathrm {x^{2}-4} }{mathrm {x-2} }}}

substituting 2{displaystyle 2}

for x{displaystyle x}

will cause the function to equal 00{displaystyle {frac {mathrm {0} }{mathrm {0} }}}

giving you an indeterminate form. or, if you get an undefined result where the numerator is a non-zero value and the denominator is 0{displaystyle 0}

the limit does not exist.

step 2. try factoring out and cancelling terms that lead to 0{displaystyle {frac {mathrm {0} }{mathrm {0} }}}

or ∞∞{displaystyle {frac {mathrm {infty } }{mathrm {infty } }}}

. in the previous example limx→2x2−4x−2{displaystyle \lim _{x\to 2}{frac {mathrm {x^{2}-4} }{mathrm {x-2} }}}

we can factor out and cancel x−2{displaystyle x-2}

: limx→2(x−2)(x+2)x−2{displaystyle \lim _{x\to 2}{frac {mathrm {(x-2)(x+2)} }{mathrm {x-2} }}}

= limx→2(x+2){displaystyle {displaystyle \lim _{x\to 2}(x+2)}}

. we can evaluate it by plugging in 2{displaystyle 2}

and the limit is 4{displaystyle 4}

step 3. try to multiply the numerator and the denominator with a conjugate

we have limx→42−x4−x{displaystyle \lim _{x\to 4}{frac {mathrm {2-{sqrt {x}}} }{mathrm {4-x} }}}

. if you multiply the numerator and denominator with (2+x){displaystyle (2+{sqrt {x}})}

will transform it into limx→44−x(4−x)(2+x){displaystyle \lim _{x\to 4}{frac {mathrm {4-x} }{mathrm {(4-x)(2+{sqrt {x}})} }}}

. you can cancel out (4−x){displaystyle (4-x)}

to get a simpler limx→412+x{displaystyle \lim _{x\to 4}{frac {mathrm {1} }{mathrm {2+{sqrt {x}}} }}}

. this comes up to 14{displaystyle {frac {mathrm {1} }{mathrm {4} }}}

step 4. use trigonometric transformations

if your limit is limθ→01−cosθθ{displaystyle \lim _{theta \to 0}{frac {mathrm {1-cos\theta } }{mathrm {theta } }}}

multiply the numerator and denominator with (1+cosθ){displaystyle (1+cos\theta)}

to get limθ→01−cos2θ(θ)(1+cosθ){displaystyle \lim _{theta \to 0}{frac {mathrm {1-cos^{2}\theta } }{mathrm {(theta)(1+cos\theta)} }}}

. use sin2θ+cos2θ=1{displaystyle sin^{2}\theta +cos^{2}\theta =1}

and separate the multiplied fractions to obtain limθ→0sinθ{displaystyle \lim _{theta \to 0}sin\theta }

∗{displaystyle *}

sinθθ{displaystyle {frac {mathrm {sin\theta } }{mathrm {theta } }}}

∗{displaystyle *}

1(1+cosθ){displaystyle {frac {mathrm {1} }{mathrm {(1+cos\theta)} }}}

. you can plug in 0{displaystyle 0}

to get 0∗1∗1{displaystyle 0*1*1}

. the limit is 0{displaystyle 0}

step 5. find limits at infinity

limx→01x{displaystyle \lim _{x\to 0}{frac {mathrm {1} }{mathrm {x} }}}

has a limit at infinity. it cannot be simplified to be a finite number. examine the graph of the function if this is the case. for the limit in the example, if you look at the graph of y=1x{displaystyle y={frac {mathrm {1} }{mathrm {x} }}}

you will see that y→∞{displaystyle {displaystyle y\to \infty }}

as x→0{displaystyle {displaystyle x\to 0}}

step 6. use l'hôpital's rule

this is used for indeterminate forms like 00{displaystyle {frac {mathrm {0} }{mathrm {0} }}}

or ∞∞{displaystyle {frac {mathrm {infty } }{mathrm {infty } }}}

. this rule states that for functions f and h differentiable on an open interval i except at a point c in i, if limx→cf(x){displaystyle {displaystyle \lim _{x\to c}f(x)}}

= limx→ch(x)=0{displaystyle {displaystyle \lim _{x\to c}h(x)}=0}

or limx→cf(x){displaystyle {displaystyle \lim _{x\to c}f(x)}}

= limx→ch(x)=±∞{displaystyle {displaystyle \lim _{x\to c}h(x)}=\pm \infty }

and h′(x)≠0{displaystyle {displaystyle h'(x)\neq 0}}

for all x≠c{displaystyle {displaystyle x\neq c}}

in i{displaystyle i}

and if limx→cf′(x)h′(x){displaystyle \lim _{x\to c}{frac {mathrm {f'(x)} }{mathrm {h'(x)} }}}

exists, limx→cf(x)h(x)=limx→cf′(x)h′(x){displaystyle \lim _{x\to c}{frac {mathrm {f(x)} }{mathrm {h(x)} }}=\lim _{x\to c}{frac {mathrm {f'(x)} }{mathrm {h'(x)} }}}

. this rule converts indeterminate forms to forms that can be easily evaluated. for example, limθ→0sinθθ{displaystyle \lim _{theta \to 0}{frac {mathrm {sin\theta } }{mathrm {theta } }}}

= limθ→0cosθ1{displaystyle \lim _{theta \to 0}{frac {mathrm {cos\theta } }{mathrm {1} }}}

= 11{displaystyle {frac {mathrm {1} }{mathrm {1} }}}

= 1{displaystyle 1}

Препоръчано: